

				,	Subj	ject	Cod	e: K	ME	502
Roll No:										

Printed Page: 1 of 3

BTECH (SEM V) THEORY EXAMINATION 2023-24 STRENGTH OF MATERIAL

TIME: 3 HRS M.MARKS: 100

Note: 1. Attempt all Sections. If require any missing data; then choose suitably.

SECTION A

1. Attempt all questions in brief.

Q no.	Question	Marks	CO
a.	Briefly explain Poisson's ratio and Bulk modulus.	2	1
b.	What is impact load and write formula for impact stress?	2	1
c.	Why the strain at the common interface is equal in a composite beam?	2	2
d.	What is the importance of section modulus of a beam?	2	2
e.	What is spring? What are different types of spring?	2	3
f.	State the effect of eccentric loading on short column.	2	3
g.	What is 'Shrinkage allowance' in compound cylinders?	2	4
h.	In case of gas as a fluid, which type of container will be used to contain the fluid?	2	4
i.	Briefly explain unsymmetrical bending.	2	5
j.	What assumptions are taken in the analysis of shear center in beams?	2	5

SECTION B

2. Attempt any three of the following:

a.	A composite bar made up of copper, steel and brass is rigidly attached to	10	1
	the end supports as shown in figure.		
	COPPER STEEL 40 mm 99 40 mm 40 mm		
	Determine the stresses in the three portions of the bar when the		
	temperature of the composite system is raised by 70°C if		
	(i) The supports are rigid		
	(ii) The supports yield by 0.6 mm		
	Take E _c = 100GPa, E _s = 205GPa, E _b = 95GPa, α_c = 18 x 10 ⁻⁶ /°C, α_s = 11 x 10 ⁻⁶ /°C and α_b = 19 x 10 ⁻⁶ /°C.		
b.	Derive the relation of torsional equation of shaft.	10	2
c.	Using Euler's formula, determine the critical stresses for a strut of	10	3
	slenderness ratio 80, 120, 160 and 200 under the condition of		ļ
	(i) Both ends hinged,		
	(ii) Both ends fixed.		
	Take E= 205 GPa.		
d.	Wall thickness of a cylindrical shell of 800-mm internal diameter and 2-	10	4
	m long is 10 mm. If the shell is subjected to an internal pressure of 1.5		
	MPa, find the following:		
	(1) The maximum intensity of shear stress induced		
	(2) The change in dimensions of the shell		

				,	Subj	ject	Cod	e: K	ME	502
Roll No:										

Printed Page: 2 of 3

BTECH (SEM V) THEORY EXAMINATION 2023-24 STRENGTH OF MATERIAL

TIME: 3 HRS M.MARKS: 100

	Take E= 205 GPa, Poisson's ratio= 0.3		
e.	With the help of Winkler batch theory, derive the value of factor h2 for:	10	5
	(i) Circular section		
	(ii) Triangular section		

SECTION C

3. Attempt any *one* part of the following:

a.	For a given loading conditions the state of stress in the wall of a cylinder	10	1
	is expressed as follows:		
	(i) 85 MN/m ² tensile,		
	(ii) 25 MN/m ² tensile at right angles to (i), and		
	(iii) Shear stresses of 60 MN/m ² on the planes on which the		
	stresses (i) and (ii) act; the shear couple acting on planes		
	carrying the 25 MN/m ² stress is clockwise in effect.		
	Calculate principal stresses and principal planes.		
b.	The load on a bolt consists of an axial pull of 20 kN together with a	10	1
	transverse shear of 10 kN, Calculate the diameter of bolt according to :		
	(i) Maximum total strain energy theory, and		
	(ii) Maximum shear strain energy theory.		, ^
	Take elastic limit in tension 280 MPa, factor of safety=3 and Poisson's	C	(D)
	ratio = 0.3	~ ~)

4. Attempt any *one* part of the following:

a.	A timber beam 80 mm wide and 160 mm deep is reinforced with two	10	2
	steel plates 5 mm thick and 60 mm wide on top and bottom. If bending		
	moment of 800 N-m acts at section of this beam, calculate the magnitude		
	of maximum fiber stresses in tensions and compression in wood and		
	steel. Assume $E_s/E_W = 15$.		
b.	Compare hollow shaft and solid shaft.	10	2
	(i) On the basis of Strength.		
	(ii) On the basis of weight.		

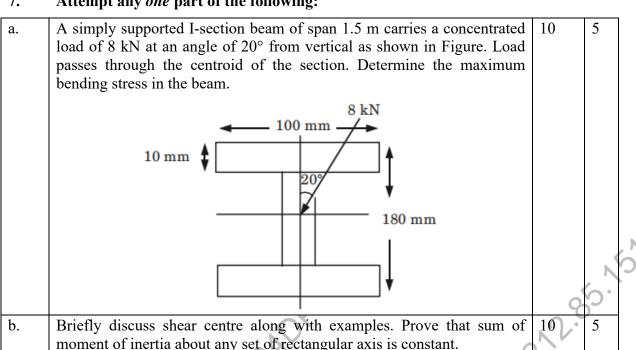
5. Attempt any *one* part of the following:

a.	What assumptions are made in the analysis of columns by Euler's	10	3
	buckling theory? Derive an expression for Euler's crippling load when		
	both ends of column are hinged.		
b.	A closed-coiled helical spring having 24 turns is made of 8-mm diameter	10	3
	wire. The mean diameter of the spring is 80 mm and it carries a load of		
	250 N. Determine the shear stress developed, the deflection and the		
	stiffness of the spring. Take, G=84 GPa.		

6. Attempt any *one* part of the following:

a.	Deduce the general equations for circumferential and radial stresses	10	4
	developed in thick cylinders along with assumptions.		
b.	A steel tube of 120-mm external diameter is shrunk on another steel tube	10	4
	of 48-mm internal diameter. After shrinking, the diameter at the junction		
	is 80 mm. Initial difference of diameters at the junction before shrinking		
	was 0.04 mm. Determine		

Subject Code: KME502 Roll No:


Printed Page: 3 of 3

BTECH (SEM V) THEORY EXAMINATION 2023-24 STRENGTH OF MATERIAL

TIME: 3 HRS **M.MARKS: 100**

(i) Radial pressure at the junction,	
(ii) Hoop stress developed in the two tubes after the shrinking.	
Take E= 210 GPa	

7. Attempt any one part of the following:

